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Abstract
The transport of Brownian particles in a finite tube is investigated in the
presence of asymmetric unbiased external forces. The system is embedded
in a finite region and bounded by two particle reservoirs. It is found that
the transport phenomena under asymmetric unbiased external forces exhibit
peculiar behaviours. In a spatially symmetric tube, the particles can be pumped
by asymmetric unbiased forces. Both spatial asymmetry of a tube and temporal
asymmetry of unbiased external forces are the two driving factors for pumping
particles from a reservoir at low concentration to one at the same or higher
concentration. The interplay between these two factors can induce peculiar
phenomena.

PACS numbers: 05.60.Cd, 02.50.Ey, 05.40.Jc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Noisy transport in ratchet systems, which are far from equilibrium, has been an active field of
research over the last decade [1–3]. In these spatially finite structures, the directed motion of
particles can be induced by zero-mean nonequilibrium fluctuations and noise.

The idea of applying the ratchet mechanism to model pumps has already appeared
in the literature [4–10]. Prost and co-workers researched the transport of an asymmetric
pump with a simple two-level model and quantified how vectorial symmetry plus dissipation
creates a macroscopic motion [4]. Kosztin and Schulten [5] investigated the fluctuation-driven
molecular transport through an asymmetric potential pump and three transport mechanisms:
driven by a potential gradient, by an external periodic force and by nonequilibrium fluctuations.
Astumian and Derenyi [6] studied a chemically driven molecular electron pump in which
charge can be pumped through a tiny gated portal from a reservoir at low electrochemical
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potential to one at the same or higher electrochemical potential by cyclically modulating the
portal and gate energies. Rey and co-workers [7] investigated the nonadiabatic electron heat
pump. Wambaugh and co-workers [8] studied the transport of fluxons in superconductors
by alternating current rectification. Kjelstrup and co-workers [9] studied the active transport
in slipping biological pumps and shown that how heating as well as cooling effects can be
associated with the pump operation. Sancho and Gomez-Marin [10] researched a model for a
Brownian pump powered by a flashing ratchet mechanism. Brownian particles moving in an
asymmetric finite tube in the presence of an unbiased external force were investigated by Ai
and co-workers [11].

The previous works on pump were focused on the symmetric unbiased force. In the
present work, we extend the previous work on the Brownian pump to the case of asymmetric
unbiased forces. We emphasize on finding how the interplay between spatial asymmetry and
temporal asymmetry affects the current and the pumping capacity of the system.

2. General analysis

We consider overdamped Brownian particles moving in a finite tube in the presence of
asymmetric unbiased external forces (figure 1). The tube is embedded in a finite region and
bounded by two particle reservoirs. In general, the overdamped dynamics is well governed by
the following Langevin equations expressed in a dimensionless form [2, 12]:

η
dx

dt
= F(t) +

√
ηKBT ξx(t), (1)

η
dy

dt
=

√
ηKBT ξy(t), (2)

η
dz

dt
=

√
ηKBT ξz(t), (3)

where x, y, z are the three-dimensional (3D) coordinates, t is the time, KB is the Boltzmann
constant, T is the absolute temperature, η is the viscous friction coefficient (static mobility)
and ξx,y,z(t) is the Gaussian white noise with zero mean and a correlation function
〈ξi(t)ξj (t

′)〉 = 2δij δ(t − t ′) for i, j = x, y, z 〈· · ·〉 denotes an ensemble average over the
distribution of noise. δ(t) is the Dirac delta function. The reflecting boundary conditions
ensure the confinement of the dynamics within the tube. F(t) is a temporally asymmetric
unbiased external force along the x direction which may be imparted as a result of energy
gained via ATP hydrolysis in biological pumps and satisfies

F(t) =

⎧⎪⎨
⎪⎩

1 + ε

1 − ε
F0, nτ � t < nτ +

1

2
τ(1 − ε),

−F0, nτ +
1

2
τ(1 − ε) < t � (n + 1)τ,

(4)

where τ is the period of the unbiased force, F0 is its magnitude and ε is the temporal asymmetric
parameter with −1 � ε � 1.

The shape of the tube is described by its radius

ω(x) = a sin

(
2πx

L

)
+ b, x0 � x � x0 + L, (5)

where a is the parameter controlling the slope of the tube, b is the parameter that determines
the half width at the bottleneck. L is the length of the tube and x0 is the coordinate of the left
end which describes the asymmetry of the tube.
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Figure 1. Scheme of the pumping device: a spatially asymmetric tube is embedded in a finite
region of length L and bounded by two particle reservoirs of concentrations ρ0 and ρ1. The shape
of the tube is determined by its radius ω(x) and the left-end coordinate x0 of the tube. The particles
in the tube are powered by temporally asymmetric unbiased external forces F(t).

The movement equation of a Brownian particle moving along the axis of the 3D tube
can be described by the Fick–Jacobs equation [11–14] which is derived from the 3D (or
2D) Smoluchowski equation after the elimination of y and z coordinates by assuming
equilibrium in the orthogonal directions. The reduction of the coordinates may involve not
only the appearance of an entropic barrier, but also the effective diffusion coefficient. When
|ω′(x)| � 1, the effective diffusion coefficient reads [12–15]

D(x) = D0

[1 + ω′(x)2]α
, (6)

where D0 = kBT /η and α = 1/3, 1/2 for 2D and 3D, respectively.
Considering the effective diffusion coefficient and the entropic barrier, the dynamics of a

Brownian particle moving along the axis of the 3D tube can be described by [11–13]

∂ρ(x, t)

∂t
= ∂

∂x

[
D(x)

∂ρ(x, t)

∂x
+

D(x)

kBT

∂A(x, t)

∂x
ρ(x, t)

]
= −∂j (x, t)

∂x
, (7)

where we define a free energy A(x, t) := E − T S = −F(t)x − T kB ln h(x) [12–14]. Here,
E = −F(t)x is the energy, S = kB ln h(x) is the entropy and h(x) is the dimensionless
transverse cross section π [ω(x)/L]2 of the tube in three dimensions. j (x, t) is the probability
current and ρ(x, t) is the particle concentration.

If its period is longer than any other time scale of the system, namely F(t) changes very
slowly with respect to t, there exists a quasi-steady state. In the steady state, the concentration
is just a function of the space thus, and the flux becomes a constant j . The concentration
ρ(x) follows a first-order nonhomogeneous linear differential equation whose formal solution
is [10]

ρ(x) = exp

[
−

∫ x

x0

A′(z)
kBT

dz

]
×

{
C0 − j

∫ x

x0

dz

D(z)
exp

[∫ x

x0

A′(y)

kBT
dy

]}
. (8)

The unknown constant c0 can be found by imposing the left reservoir concentration
ρ0 = ρ(x0) and the right concentration ρ1 = ρ(x0 + L) as fixed boundary conditions [9],
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although different from the typical Brownian motors, the boundary conditions are not periodic
nor the normalized conditions are imposed. Then, c0 = ρ(x0) and

j (F0) = kBT
[
ρ0 − ρ1 e

F0L

kB T
]

∫ x0+L

x0
[1 + ω′(x)2]α e− F0(x−x0)

kB T
[

ω(x0)

ω(x)

]2
dx

. (9)

The average current is

J = 1

τ

∫ τ

0
j (F (t)) dt = 1

2
(j1 + j2), (10)

where

j1 = (1 − ε)j

(
1 + ε

1 − ε
F0

)
, j2 = (1 + ε)j (−F0). (11)

We consider the situation in which J is equal to zero in studying the pumping capacity,
which corresponds to the case in which the pump maintains the maximum concentration
difference between the two reservoirs across the channel with no net leaking of a particle. The
method is the same as that in [10] and [11]. This situation is analogous to the stalling force in
Brownian motors.

From equations (8)–(10), we can obtain

ρ1

ρ0
=

∫ x0+L

x0
[1+ ω′(x)2]α

[
e
− 1+ε

1−ε

F0(x−x0)

kBT + e
F0(x−x0)

kBT

][
ω(x0)

ω(x)

]2
dx

e
F0L

kBT
∫ x0+L

x0
[1+ ω′(x)2]α e

− 1+ε
1−ε

F0(x−x0)

kBT

[
ω(x0)

ω(x)

]2
dx+e

− 1+ε
1−ε

F0L

kBT
∫ x0+L

x0
[1+ ω′(x)2]α e

F0(x−x0)

kBT

[
ω(x0)

ω(x)

]2
dx

.

(12)

3. Results and discussions

Since the results from 2D are similar to 3D, we mainly focused on the 3D case. For simplicity,
we take kB = 1, η = 1 and L = 2π throughout the study.

The current J acts as a function of the asymmetric parameter ε of the external forces in
figure 2(a) for the spatially symmetric tube at ρ0 = ρ1. The current is negative for ε < 0, while
the current is positive for ε > 0. It shows that the current can be reversed by the asymmetric
unbiased forces, even if the tube is spatially symmetric. The two curves (x0 = π/2, x0 = 3π/2)
intersect each other at two positions: one is at J = 0, ε = 0, and the other is at J = 0.098 91,
ε = 0.18. Figure 2(b) shows the concentration ratio ρ1/ρ0 as a function of the asymmetric
parameter ε of the external unbiased forces for a spatially symmetric tube at J = 0. We
can find that the concentration ratio ρ1/ρ0 increases monotonically with the increase of the
asymmetric parameter ε. The ratio of the concentrations ρ1/ρ0 is greater than 1 for ε < 0,
and less than 1 for ε > 0. Namely, even the tube is spatially symmetric, its pumping capacity
can be induced by the asymmetric unbiased forces. Both curves for x0 = π/2 and x0 = 3π/2
intersect each other at ε = 0, ρ1/ρ0 = 1. The condition corresponding this intersection
position is that both the tube and unbiased forces are symmetric. That is to say, the pumping
capacity of the system disappears.

In order to describe the current transformation in detail, the current J contours on the
x0–ε plane at ρ1 = ρ0 in this system are shown in figure 3. Different values of the initial
coordinate x0 represent different tube shapes. When x0 = π/2 or x0 = 3π/2, the tube is
symmetric in space. In the above discussion, the influence of the spatial asymmetry of a tube
on the current is investigated. Figure 3 shows that both the asymmetry of the space and the
temporal asymmetry of the unbiased forces are the two driving factors obtaining a net current.
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(a) (b)

Figure 2. (a) Current J as a function of ε for different values of x0 at a = 1/2π , b = 1.5/2π ,
α = 1/2, T = 0.5, F = 0.5, ρ1 = 1 and ρ0 = 1. (b) The ratio of concentrations as a function of ε

for different values of x0 at a = 1/2π , b = 1.5/2π , α = 1/2, T = 0.5, F = 0.5 and J = 0.

Figure 3. Current J contours on the x0–ε plane at a = 1/2π , b = 1.5/2π , α = 1/2, T = 0.5,
F = 0.5 and ρ1/ρ0 = 1. The thick solid line indicates J = 0 contour.

When the two driving factors compete with each other, the current may reverse its direction.
The thick solid line indicates J = 0 contour. The positive driving factor and the negative
one cancel each other out, so the current disappears, at all points of this curves. In the region
on the left of the curve corresponding to zero current, all currents are negative. In the other
region, however, the currents are positive. For a given spatially asymmetric parameter x0,
the current may undergo a reversal in direction. When ε = 0.0, the system comes back to a
channel Brownian pump powered by symmetric unbiased external forces, and the results are
the same as our previous ones [11].

Similarly, in order to illustrate the pumping capacity in detail, the concentration ratio
ρ1/ρ0 contours are shown in figure 4, the thick solid line indicates ρ1/ρ0 = 1 contour, and
this representative curve describes the competition of the two driving factors: the asymmetry

5



J. Phys. A: Math. Theor. 43 (2010) 155001 K-N Ran et al

Figure 4. The concentration ratio ρ1/ρ0 contours on the x0–ε plane at a = 1/2π , b = 1.5/2π ,
α = 1/2, T = 0.5, F = 0.5 and J = 0. The thick solid line indicates ρ1/ρ0 = 1 contour.

Figure 5. Current J versus temperature T for different asymmetric parameters ε of unbiased
external forces at a = 1/2π , b = 1.5/2π , α = 1/2, F = 0.5, x0 = π/2, ρ1 = 1 and ρ0 = 1.

of the space and the asymmetry of the unbiased forces. When ε = 0.0, the concentration ratio
ρ1/ρ0 is greater than 1 for 0 � x0 < π/2 and 3π/2 � x0 < 2π , equal to 1 at x0 = π/2 and
3π/2, and less than 1 for π/2 < x0 < 3π/2. And when x0 = π/2 or 3π/2, the concentration
ratio is greater than 1 for ε > 0, equal to 1 at ε = 0 and less than 1 for ε < 0. Thus, the
pumping direction is positive (ρ1 > ρ0) for 0 � x0 < π/2 or 3π/2 � x0 < 2π ; further, when
ε > 0, the two driving factors will both promote the growth of ρ1/ρ0. Otherwise, the pumping
direction is negative (ρ0 > ρ1) for π/2 < x0 < 3π/2; when ε < 0, the two driving factors
will both promote the growth of ρ0/ρ1. It is obvious that the pumping direction may reverse
when a positive driving factor competes with a negative one; when ρ1/ρ0 = 1, the pumping
capacity disappears.

In figure 5 we plot the current as a function of the temperature T at x0 = π/2 for
different values of the asymmetric parameter ε of unbiased external forces. The curves are
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Figure 6. Ratio of concentrations as a function of T for different asymmetric parameters ε of
unbiased external forces at a = 1/2π , b = 1.5/2π , α = 1/2, F = 0.5, x0 = π/2 and J = 0.

the bell-shaped function of temperature. The asymmetry of the unbiased forces can induce
a net current, even when the tube is symmetric. Except for the asymmetry of the tube, the
asymmetry of the external forces is another way of obtaining a net current (as can be seen from
figure 3). When T −→ 0, even if T = 0, the particles can move from one particle reservoir
to the other. Another significant feature shown in the figure is that the current is negative
for ε < 0, and positive for ε > 0, which indicates that the asymmetry of the external forces
may affect the direction of the current. When ε = 0, the unbiased forces and the shape of
the tube are symmetric, and the system is still at equilibrium, which makes the current zero,
even though the temperature is high. When T −→ ∞, the intensity of noise is so strong that
the contribution of the asymmetric unbiased external force to the current can be neglected.
In other words, the noise is dominant in the system, which takes the nonequilibrium system
to equilibrium again, resulting in zero current. Therefore, there is an optimized value of T
at which the current takes its maximum value, which indicates that the thermal noise can
facilitate the current.

Figure 6 shows the ratio of concentrations as a function of T for different asymmetric
parameters ε of unbiased external forces at J = 0, x0 = π/2. The curves are the bell-shaped
function of the temperature too. Even when the tube is symmetric, the asymmetry of the
unbiased forces (ε = 0.3, ε = −0.3) can induce ρ1/ρ0 �= 0. For all temperatures, ρ1/ρ0 is
less than 1 for ε < 0, equal to 1 at ε = 0 and greater than 1 for ε > 0. When T −→ 0,
even if T = 0, the system still possesses a pumping capacity, except for ε = 0. The particle
transports from the left particle reservoir to the right for ε = 0.3, while it transports from the
right particle reservoir to the left for ε = −0.3. When T −→ ∞, the effect of the asymmetric
unbiased external force disappears and the pumping capacity becomes zero. Therefore, there
is an optimized value of T at which the ratio takes its maximum value, which indicates that
the thermal noise with proper intensity can facilitate the particle transport.

4. Concluding remarks

In this paper, we demonstrated that transport phenomena in a finite tube under asymmetric
unbiased external forces exhibit some features that are radically different from conventional
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transport. The pumping device is embedded in a finite region and bounded by two particle
reservoirs. It is found that, in the spatially symmetric tube, the particles transporting from
one concentration reservoir to the other can be induced by the asymmetry of unbiased forces
(ε �= 0). We can find that the sign of the current is determined by the driving factor in
the dominant position between the spatial asymmetry and the temporal asymmetry. When
the two driving factors compete with each other, the current may reverse its direction. With
regard to the pumping capacity, both the spatial asymmetry and the temporal asymmetry
of unbiased forces are the two driving factors affecting the ratio of the concentrations. It
is obvious that the pumping direction may reverse when a positive driving factor competes
with a negative one; when ρ1/ρ0 = 1, the pumping capacity disappears. It will create
a current and pumping capacity as long as the equilibrium of the system we presented is
destroyed by spatial asymmetry and/or temporal asymmetry. We can find that there are some
different optimized values of temperature T for different values of ε which give the maximum
ratio of ρ1/ρ0 or the maximum current. This is due to the competition between the two
factors.

The model is too simple to provide a realistic description of real systems. However, the
predicted effects in our model may be observed in many processes, such as the vortex ratchet
in a superconductor [16], gating ratchet with cold atoms in optical lattice [17], diffusion of
ions and macromolecular solutes through the channels in biological membranes [18], transport
in zeolites [19] and diffusion in man-made periodic porous materials [20].
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